

The RG6 gripper is a flexible electric gripper specially designed for robots from Universal Robots. The long stroke allows the gripper to handle a variety of object sizes. Adjusting the gripping force allows the gripper to handle both delicate and heavy object. The standard fingers can be used with many different objects, it is also possible to fit custom fingers.

The installation complexity is minimal as the cable attaches directly onto any robot from Universal Robots.

All configurations of the gripper are controlled from the Universal Robots software.

Features

• Simple installation

Runs directly from the robot.

• Integrated control board

No need for wiring or external programming.

Flexible

Allows handling of multiple sized objects.

Supports dual grippers

Two grippers can be operated without any extra wiring.

Adjustable force

Is set in the URcap.

Quick finger change

Replace the standard fingertips by loosening two screws.

• Plug n' produce

Mount, connect, - Automate.

Failsafe operation

In case of power loss the gripping force is maintained.

• Force and Width detection

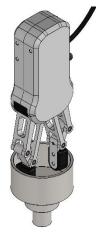
Uses I/O's to give feedback on reached force and width.

Analog width feedback

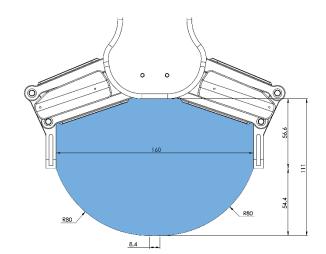
One of the analog inputs on the robot is always corresponding to the present finger position.


Tool output extension

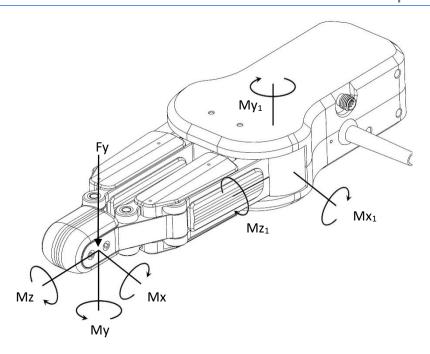
The robot tool connecter is extended to the gripper connector.


Technical data	Min	Typical	Max	Units
Total stroke (adjustable)	0	-	160	[mm]
Finger position resolution	-	0,15	-	[mm]
Repetition accuracy	-	0,15	0,3	[mm]
Reversing backlash	0,4	0,7	1	[mm]
Gripping force (adjustable)	25	-	120	[N]
Gripping force accuracy	±2	±5	±10	[N]
Operating voltage*	10	24	26	[V DC]
Power consumption	1,9	-	14,4	[W]
Maximum Current	25	-	600	[mA]
Ambient operating temperature	5	-	50	[°C]
Storage temperature	0	-	60	[°C]
Product weight	-	1	-	[kg]

^{*}At 12V the gripper runs at approximately half the normal speed


External Grip

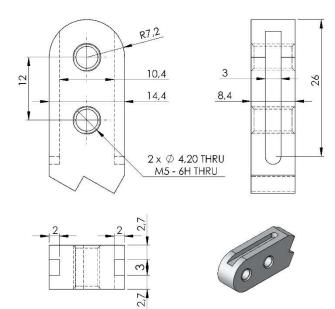
Internal Grip


Fingers are rotated.

Load capacity

Parameter	Static	Unit
Fy	1890	[N]
Mx	38	[Nm]
Му	20	[Nm]
Mz	35	[Nm]
Mx ₁	120	[Nm]
My ₁	56	[Nm]
Mz ₁	120	[Nm]

The parameters in the fingertips are calculated at the shown closed position and will change in relation to the finger positions.

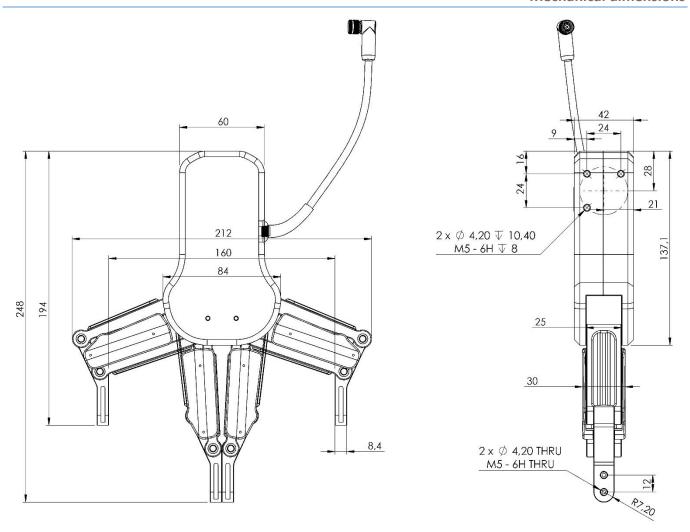


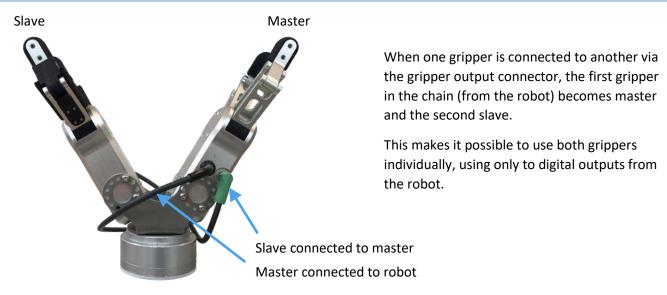
Fingers

The standard fingers can be used for many different workpieces. If custom fingers are required, they can be made to fit the gripper finger tips.

Standard fingersFor a variety of workpieces

Dimensions of the gripper aluminum finger tips.


Tool connector pinout


Cable SAC-8P-PUR - 1404191

pin	wire	UR I/O	UR I/O V3
1	White	AI2	Tool analog input 2
2	Brown	AI3	Tool analog input 3
3	Green	DI9	Tool input 1
4	Yellow	DI8	Tool input 0
5	Gray	Power	24V DC
6	Pink	DO9	Tool output 1
7	Blue	DO8	Tool output 0
8	Red	GND	0V DC

Mechanical dimensions

Gripper output connector

I/O Feedback

The gripper uses DI8, DI9 and AI3 to give feedback on its status and finger position.

Use DI8 to detect if the gripper grabbed a workpiece or stopped at a given position.

DI9 will go LO (Busy) when the gripper is programmed, moving or changing force.

Digital status Feedback	Tool I	nputs
UR Version 3	0	1
UR Version 1 & 2	DI8	DI9
Position Reached	LO	-
Force Reached	HI	-
Gripper Busy	-	LO
Gripper Ready	-	HI

Analog feedback

AI2 outputs a voltage corresponding to the gripper width.

Analog Feedback

	UR Input	Voltage	Width
Actual Width @ 0V:5V	AI2	03.7V*	0160mm
Actual Width @ 0V:10V	AI2	03.0V*	0160mm

^{*} Due to the grippers analog output resistance (10k Ω), the analog feedback voltage will be affected by the robot input resistance. For the robots from Universal Robots, the input resistance is 29k Ω @ 0V:5V and 15k Ω @ 0V:10V, that results in a maximum input voltage of 5V $\cdot \frac{29k\Omega}{10k\Omega+29k\Omega} = 3.7V$ @ 0V:5V and 5V $\cdot \frac{15k\Omega}{10k\Omega+15k\Omega} = 3.0V$ @ 0V:10V which correspond to the maximum width of 160mm.

The actual width can be calculated by $\frac{\text{voltage}}{\text{maximum input voltage}} \cdot 160 \text{mm}$.